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Dynamical clustering in large populations of Rasler oscillators under the action of noise
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The effects of noise on the dynamical clustering of globally coupled chaosis|®ooscillators are numeri-
cally investigated. Stable clusters and intermittent clustering regimes are found, depending on the coupling
intensity and the noise level. Our results agree with the first experimental observations of dynamical clustering
recently reported for globally coupled electrochemical oscillators.
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Since the pioneering work of Fujisaka and Yamatfhit A population of N identical globally coupled chaotic
is known that populations of globally coupled chaotic oscil-Rossler oscillators under the action of independent
lators can undergo mutual synchronization when the coué-correlated noises will be considered. The model is de-
pling intensity exceeds a certain thresh@ee alsd2]). As  scribed by the equations
shown by Kaneko in his extensive numerical studies of glo-

bally coupled logistic map§GCLM, [3]), the onset of syn- Xi= =Y =z + e(X—=x;) + &(t),

chronization is preceded by a wide interval of coupling in- .

tensities where dynamical clustering is observed. In this yi=x+ayi+e(y—y), (1)
regime, some of the elements form synchronous clusters,

while others may be still nonentrained. The emerging cluster 7= b—cz+xz+ 6(;_ z)

partitions strongly depend on the initial conditions, so that ' - v

the system has a large number of different attractors. Therggith j=1,... N, where & are noises with(£)=0 and

fore, its statistical properties resemble those of spin glasse{%i(t)gj(t/»:255(»[_»[/)5” . The parametere in these

[3,4]. In addition to GCLM, dynamical clustering was also gquations specifies the intensity of global coupling between
found for circle maps[5], Raossler oscillators[6], cross-  the oscillators, and

coupled chaotic neural networkg], and coupled biochemi-
cal reactorg8]. . N

Dynamical clustering in globally coupled maps is robust X(t)= N 2 Xi(t), (2)
with respect to the introduction of weak noise and quenched =1
disorder. For instance, this behavior persists for logistic ) _ )
maps even when up to 20% of the connections are randomNyith analogous expressions fgrandz. Throughout this pa-
deleted[9], or when the intensities of connections betweenPer we takea=b=0.2, andc=4.5 so that the individual
elements are randomly modifigd0]. We have also found Oscillators are in the chaotic regini#3].
that coupled discrete-time neural networks can undergo clus- Clustering can be identified through the examination of
tering even when a substantial fraction of cross links isthe distribution of instantaneous pair distanaggt) be-
eliminated[7]. Moreover, Kaneko has pointed out that the tween elements, which are defined as
inclusion of very weak noises may improve numerical simu-
lations of clustering in GCLM by preventing the artifacts due dij= Vi, —X)2+(yi—Y))?+(zi—z)? 3
to digital round-off[11].

Recently, the first experimental observation of dynamicaln the absence of noise, stable clusters can be found such that
clustering was reportefd.2]. The investigated system repre- the pair distances between any two elements of the cluster
sented a population of globally coupled chaotic electro-asymptotically go to zero in the limit—oc. This is, however,
chemical oscillators, where the intensity of global couplingno longer possible when noise is included. Instead, a cluster
could be varied. An essential feature of these interesting exaould always represent a compact cloud of a certain size.
periments was that relatively strong noise was present. Tdherefore, we define a cluster as a subset of the population
provide their detailed theoretical analysis, the influence ofsuch that the pair distances between any two elements in this
noise on dynamical clustering in populations of chaotic os-subset are less than a certain threshglthat is,d;;< 6 for
cillators should be therefore systematically investigated. Theny two elementsandj in the subset. The same definition of
aim of this Rapid Communication is to study the effects ofclustering was previously used for randomly coupled net-
weak and strong noises on dynamical clustering of chaotigvorks of logistic maps[9] and in the experiment§12].
Rossler oscillators. We find that this model system is able tér'hough the choice of remains arbitrary, this threshold can-
reproduce all basic properties of dynamical clustering obnot be neither too small nor too large, because in the latter
served in experimentdl2]. case two closely lying clusters would be identified as a single
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cluster. As discussed below, we have found that for the pa- T T T *
rameters indicated above a suitable choicé=s10 3. 04 _ 1k _
. : e=0 e=0.013
Close to the onset of dynamical clusteri@glledconden-
sation transitionin our previous publicatiof6]) only a small
fraction of elements is found belonging to clusters. The rest0:2 - 1r ]
of the elements are not entrained. To measure the extent ¢
clustering two order parameters can be introdu(sst also ‘ ) nﬂ.ﬂ

[6,9,17). The first of themy(t), is given by the fraction of 04y ' T ‘

pairs of elementsi(j) which are found at timéseparated by o4 - c=0005 e=0.03 i
a distanced;j(t) <. Namely,
1 N 0.2 + A T
(0= NoT) & & O i) (4) | |
0.0 e, ‘ . .
where ®(x) is the step function, such th&(x)=0 for x 0 5 1015 g 3 10 13 20
<0 and®(x)=1 otherwise. The second order parameter, d d
s(t), is the fraction of elementswhich at timet have at least FIG. 1. Histograms of the normalized distribution of pair dis-
one other elementlocated at a distanag; <&. This can be  tancesd between elements in a population bf=1000 Resler
expressed as oscillators at timet=5000, for various values of the coupling in-
tensity e.
1 NN
s(t)=1— — Z H O[d;(t) - 4], (5) coupling intensity e. The distributions are plotted as
N =1 =1 #i 100-column histograms in the intervai@=20. When cou-

~ pling is absent é=0) the independent chaotic oscillators

where the last term is simply the fraction of elements whichgyolve on the Rssler attractor, and therefore pair distances
do not have any other element within a sphere of radius are proadly distributed over a wide range. For relatively
When complete synchronization is achieveeis=1. If the  small intensities of couplingeg=0.005), some changes are
whole population splits into clusters we hase 1, whereas  gjready found. Pair distances are substantially smaller in av-
r <1 because the distances can still be Iarge. Fina”y, if Somérage, and the h|ghest column in the histogram Corresponds
of the elements are forming clusters but other elements arg the smallest distances. Further increasing the coupling in-
still free, we findr <s<1. tensity (e=0.013), we find a strongly nonuniform distribu-

We have numerically solved Eqgl) for populations of  tion with some clearly distinguishable peaks. A considerable
N= 1000 oscillators, by means of a standard finite-differencgraction of pair distances is now very closede=0. For e
scheme with a time incrementt=10"2. To prepare the =0.03, the histogram is formed by a few distinct lines, indi-
initial condition the system is allowed to evolve up to cating that the population is split into a few clusters: three in
= 1000 without coupling and noise, so that the oscillators gethis case. We stress that, as the system evolves, these histo-
uniformly distributed over the Rasler attractor. Global cou- grams vary considerably. Their widths change and the rela-
pling and noise are then switched on and time is reset t@ve distance between peaks successively grows and de-
zero. The evolution of the coupled population is recorded Ugreases as time elapses. For weak noise, however, the

to t=5000. Noise is applied at each time step of the numerinumber of peaks does not vary after transient effects have
cal calculation by adding to the variabtea random number faded out.

n;, drawn from a uniform distribution in g, 7). The On the other hand, the number of clusters at long times is
amplitude n, and the dispersios of noise in Eqgs(1) are  strongly dependent on the initial condition. In Fig. 2 we plot
related byS= nS/GAt. as dots the number of clusters found in single realizations at

Noise determines a lower bound for the choice of thet=5000, for many values of the coupling intensity. The line
thresholds. If the fluctuations introduced by noise in the size represents the mean number of clusters as a functiosn of
of clusters are larger than the threshold, the comparison ajbtained from the average over 20 independent realizations
pair distances witld fails to provide information on the real for each coupling intensity. A large dispersion is apparent.
clustering structure of the population. In practice, for thresh- We see from Fig. 2 that for very small values of the
olds that are too low large irregular variations are observedoupling intensity,e<0.004 no clusters are detected. Then,
in the long-time dependence of the order parametersds.  we find a zone where the number of clusters vary irregularly,
For the noise amplitude considered below, the lower boundvith two peaks at~0.005 and 0.02. Around=0.03 there
for & is around 10°. At the other end$=10"1, the order is an interval where, typically, only two to three clusters are
parameters are stationary for long times but show a considound. For slightly larger couplingg~0.04, the number of
erable dependence ah For 10 °<5<1071, on the other clusters reaches its maximal values and shows very large
hand,r ands reach stationary values that are practically in-dispersions. Then, frora~0.05 on, the system is found in a
dependent of§ and, thus, clustering is well defined. This regime where clustering and full synchronization, repre-
justifies our choiceg= 103, sented by a single cluster, coexist as possible attractors. Fi-

First, we have investigated the influence of weak noisenally, for e>0.054 only one cluster is observed at long
S=101° Figure 1 shows the normalized distributions of times.
pair distances at timé=5000, for different values of the The same scenario can be alternatively described by
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FIG. 4. Histograms over pair distances fer0.04 andS=5

FIG. 2. Number of clusters counted tat 5000 for single real- e ] i
X 10" °, at different times.

izations at many values of the coupling intensitydots. The line
stands for the average number of clusters over 20 independent re-
alizations as a function of. So far, our numerical results correspond to the case of
weak noise, where the cluster partition does not undergo sig-
studying the order parametersand s defined above as a nificant changes with time after transients have elapsed. The
function of the coupling intensity. Their average values oversituation is, however, considerably different as the intensity
20 realizations with different initial conditions for each value of noise is increased. Under the action of stronger noises,
of € are shown in Fig. 3. For small values @fbothr ands  phase-space trajectories successively explore the neighbor-
are less than unity, indicating that not all of the oscillatorshood of the many attractors of the noiseless sysfa#].
are entrained in clusters. In the interval 0.816<0.032, Correspondingly, single elements can migrate between clus-
however,s=1 andr<1, so that the population has fully ters, they can become temporarily nonentrained, and even
split into clusters and no nonentrained elements are foundull clusters can successively coalesce and split down as time
This situation is reverted for larger coupling intensities,elapses. To illustrate these effects, we have performed a se-
around e=0.045. Herer,s<<1, and thus a fraction of the ries a numerical simulations at=0.04 for several values of
population consists again of independent, nonentrained oscithe noise strength, and using in all the realizations an initial
lators. For 0.05{e<<0.055 the order parameters grow condition that, for very weak noises, leads to an asymptotic
steadily, revealing a rapid formation and coalescence of clusstate with two clusters. Results are particularly interesting in
ters. By e~0.058 both order parameters have definitivelyan intermediate interval of noise strengthsg 20 °<S<2
reached their maximum values=s=1, and full synchroni- Xx10 * where the population switches intermittently be-
zation has been achieved. tween a single-cluster and a two-cluster state. Figure 4 shows
histograms over pair distances for a single realization with
S=5x10"%, at different times. Two-cluster states are
clearly defined at=860 and 2750, whereas a single broad
cluster is observed fdr=1610 and 2000. At= 1790 we find
] a transient state with several fuzzy clusters.

The intermediate noise interval of intermittent change be-
tween one and two clusters is preceded by a regime where
] the two-cluster partition expected for very weak noises is
preserved along the whole evolution. On the other hand, for
high noises beyond the intermittency region the population is
] always found to form a single large cluster. The three re-
gimes are shown in Fig. 5, where we have plotted the time
evolution of histograms over pair distances as density plots,
] with darker tones for higher columns. For convenience in the
graphical representation, pair distances are normalated
each time with respect to their maximal valuel, (1)
=max ;{d;()}. The plots cover a time interval of 3000 time
units, for three noise strengths. For weak ndisi. 5a)],
two sharp horizontal lines represent a persistent, well-defined

FIG. 3. Order parametersands as a function of the coupling two-cluster partition. For large noig€&ig. 5(c)], a wide his-
intensity e, averaged over 20 independent realizations. Error bardogram with its maximum neait=0 reveals a single, broad
indicate the mean square deviation at selected points. cloud. For intermediate noise strengflidg. 5(b)], instead,
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ior is similar for the both studied systems. The introduction
of weak noises does not significantly change the collective
dynamics of the oscillator population, though it eliminates
possible numerical artifacts caused by the computer round-
.; -~ l & b off. Strong noises destroy clusters. At intermediate noise in-
! ' » tensities, intermittent regimes have been found.
o A o T In comparing our data with the results of the experimental
Mwm investigation of dynamical clustering in a population of glo-
c bally coupled electrochemical oscillatofd2], significant
similarities can be noticed. Clustering is observed in an in-
ki i ! | I|| ik b i i terval of coupling intensities preceding the transition to full
. chaotic synchronization. Both stable and intermittent cluster-
time ing regimes are possible. When clusters are stable, the final
FIG. 5. Density plots of histograms over normalized pair dis-CIUSter partition Is Strong!y dependent on initial conditions

tances as a function of time (2080<5000) fore=0.04 and three and various cluster partltlons can be_ observed at the same
values of the noise strengtfe) S=5x 1077, (b) S=5x 1075, and  Parameter values. Finally, the experimental dependence of
(c) S=5x107%. the order parameter (Fig. 11 in Ref.[12]) is similar to the
respective dependence for the Rler oscillators(Fig. 3).
These similarities are remarkable, especially if we take into
Yaccount that the dynamics of individual chaotic oscillators
and coupling between them were different for the experimen-

Mutual synchronization and dynamical clustering fortal system and the studied mathematical model. They suggest

Rossler oscillators were previously analyzed by us only in : L .
. P y anay Y y }hat dynamical clustering is a robust universal phenomenon
the absence of noise and for a special nonlinear form o

coupling between the elemerf@]. In the present study, we which can be expected in various large dynamical systems
. - ! formed by globally interacting elements with chaotic indi-

have used instead the standard linear form of coupling be\?idual dynamics

tween elementd1] (also called “vector” coupling[2]). '

Moreover, different values of the parameters of an individual ~ This work has been partially carried out at the Abdus

chaotic oscillator have now been chosen. Despite these diSalam International Centre for Theoretical Phy<itseste,

ferences, the observed clustering and synchronization behaitaly). D.H.Z. thanks the Centre for hospitality.

dld max

the alternation of states with one and two clouds is clearl
seen.
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