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Dynamical clustering in large populations of Rössler oscillators under the action of noise
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The effects of noise on the dynamical clustering of globally coupled chaotic Ro¨ssler oscillators are numeri-
cally investigated. Stable clusters and intermittent clustering regimes are found, depending on the coupling
intensity and the noise level. Our results agree with the first experimental observations of dynamical clustering
recently reported for globally coupled electrochemical oscillators.

PACS number~s!: 05.45.Xt, 05.45.Pq
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Since the pioneering work of Fujisaka and Yamada@1# it
is known that populations of globally coupled chaotic osc
lators can undergo mutual synchronization when the c
pling intensity exceeds a certain threshold~see also@2#!. As
shown by Kaneko in his extensive numerical studies of g
bally coupled logistic maps~GCLM, @3#!, the onset of syn-
chronization is preceded by a wide interval of coupling
tensities where dynamical clustering is observed. In t
regime, some of the elements form synchronous clust
while others may be still nonentrained. The emerging clus
partitions strongly depend on the initial conditions, so th
the system has a large number of different attractors. Th
fore, its statistical properties resemble those of spin glas
@3,4#. In addition to GCLM, dynamical clustering was als
found for circle maps@5#, Rössler oscillators@6#, cross-
coupled chaotic neural networks@7#, and coupled biochemi
cal reactors@8#.

Dynamical clustering in globally coupled maps is robu
with respect to the introduction of weak noise and quenc
disorder. For instance, this behavior persists for logis
maps even when up to 20% of the connections are rando
deleted@9#, or when the intensities of connections betwe
elements are randomly modified@10#. We have also found
that coupled discrete-time neural networks can undergo c
tering even when a substantial fraction of cross links
eliminated@7#. Moreover, Kaneko has pointed out that t
inclusion of very weak noises may improve numerical sim
lations of clustering in GCLM by preventing the artifacts d
to digital round-off@11#.

Recently, the first experimental observation of dynami
clustering was reported@12#. The investigated system repre
sented a population of globally coupled chaotic elect
chemical oscillators, where the intensity of global coupli
could be varied. An essential feature of these interesting
periments was that relatively strong noise was present.
provide their detailed theoretical analysis, the influence
noise on dynamical clustering in populations of chaotic
cillators should be therefore systematically investigated. T
aim of this Rapid Communication is to study the effects
weak and strong noises on dynamical clustering of cha
Rössler oscillators. We find that this model system is able
reproduce all basic properties of dynamical clustering
served in experiments@12#.
PRE 621063-651X/2000/62~6!/7571~4!/$15.00
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A population of N identical globally coupled chaotic
Rössler oscillators under the action of independe
d-correlated noises will be considered. The model is
scribed by the equations

ẋi52yi2zi1e~ x̄2xi !1j i~ t !,

ẏi5xi1ayi1e~ ȳ2yi !, ~1!

żi5b2czi1xizi1e~ z̄2zi !,

with i 51, . . . ,N, where j i are noises with^j i&50 and
^j i(t)j j (t8)&52Sd(t2t8)d i j . The parametere in these
equations specifies the intensity of global coupling betwe
the oscillators, and

x̄~ t !5
1

N (
j 51

N

xi~ t !, ~2!

with analogous expressions forȳ and z̄. Throughout this pa-
per we takea5b50.2, andc54.5 so that the individual
oscillators are in the chaotic regime@13#.

Clustering can be identified through the examination
the distribution of instantaneous pair distancesdi j (t) be-
tween elements, which are defined as

di j 5A~xi2xj !
21~yi2yj !

21~zi2zj !
2. ~3!

In the absence of noise, stable clusters can be found such
the pair distances between any two elements of the clu
asymptotically go to zero in the limitt→`. This is, however,
no longer possible when noise is included. Instead, a clu
would always represent a compact cloud of a certain s
Therefore, we define a cluster as a subset of the popula
such that the pair distances between any two elements in
subset are less than a certain thresholdd; that is,di j ,d for
any two elementsi andj in the subset. The same definition o
clustering was previously used for randomly coupled n
works of logistic maps@9# and in the experiments@12#.
Though the choice ofd remains arbitrary, this threshold can
not be neither too small nor too large, because in the la
case two closely lying clusters would be identified as a sin
R7571 ©2000 The American Physical Society
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cluster. As discussed below, we have found that for the
rameters indicated above a suitable choice isd51023.

Close to the onset of dynamical clustering~calledconden-
sation transitionin our previous publication@6#! only a small
fraction of elements is found belonging to clusters. The r
of the elements are not entrained. To measure the exte
clustering two order parameters can be introduced~see also
@6,9,12#!. The first of them,r (t), is given by the fraction of
pairs of elements (i , j ) which are found at timet separated by
a distancedi j (t),d. Namely,

r ~ t !5
1

N~N21! (
i 51

N

(
j 51

N

Q@d2di j ~ t !#, ~4!

whereQ(x) is the step function, such thatQ(x)50 for x
,0 and Q(x)51 otherwise. The second order paramet
s(t), is the fraction of elementsi which at timet have at least
one other elementj located at a distancedi j ,d. This can be
expressed as

s~ t !512
1

N (
i 51

N

)
j 51,j Þ i

N

Q@di j ~ t !2d#, ~5!

where the last term is simply the fraction of elements wh
do not have any other element within a sphere of radiusd.
When complete synchronization is achieved,r 5s51. If the
whole population splits into clusters we haves51, whereas
r ,1 because the distances can still be large. Finally, if so
of the elements are forming clusters but other elements
still free, we findr ,s,1.

We have numerically solved Eqs.~1! for populations of
N51000 oscillators, by means of a standard finite-differen
scheme with a time incrementDt51022. To prepare the
initial condition the system is allowed to evolve up tot
51000 without coupling and noise, so that the oscillators
uniformly distributed over the Ro¨ssler attractor. Global cou
pling and noise are then switched on and time is rese
zero. The evolution of the coupled population is recorded
to t55000. Noise is applied at each time step of the num
cal calculation by adding to the variablexi a random number
h i , drawn from a uniform distribution in (2h0 ,h0). The
amplitudeh0 and the dispersionS of noise in Eqs.~1! are
related byS5h0

2/6Dt.
Noise determines a lower bound for the choice of

thresholdd. If the fluctuations introduced by noise in the si
of clusters are larger than the threshold, the compariso
pair distances withd fails to provide information on the rea
clustering structure of the population. In practice, for thre
olds that are too low large irregular variations are obser
in the long-time dependence of the order parametersr ands.
For the noise amplitude considered below, the lower bo
for d is around 1025. At the other end,d*1021, the order
parameters are stationary for long times but show a con
erable dependence ond. For 1025,d,1021, on the other
hand,r ands reach stationary values that are practically
dependent ofd and, thus, clustering is well defined. Th
justifies our choice,d51023.

First, we have investigated the influence of weak no
S510210. Figure 1 shows the normalized distributions
pair distances at timet55000, for different values of the
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coupling intensity e. The distributions are plotted a
100-column histograms in the interval 0<d<20. When cou-
pling is absent (e50) the independent chaotic oscillato
evolve on the Ro¨ssler attractor, and therefore pair distanc
are broadly distributed over a wide range. For relative
small intensities of coupling (e50.005), some changes ar
already found. Pair distances are substantially smaller in
erage, and the highest column in the histogram correspo
to the smallest distances. Further increasing the coupling
tensity (e50.013), we find a strongly nonuniform distribu
tion with some clearly distinguishable peaks. A considera
fraction of pair distances is now very close tod50. For e
50.03, the histogram is formed by a few distinct lines, ind
cating that the population is split into a few clusters: three
this case. We stress that, as the system evolves, these h
grams vary considerably. Their widths change and the r
tive distance between peaks successively grows and
creases as time elapses. For weak noise, however,
number of peaks does not vary after transient effects h
faded out.

On the other hand, the number of clusters at long time
strongly dependent on the initial condition. In Fig. 2 we p
as dots the number of clusters found in single realization
t55000, for many values of the coupling intensity. The li
represents the mean number of clusters as a function oe,
obtained from the average over 20 independent realizat
for each coupling intensity. A large dispersion is apparen

We see from Fig. 2 that for very small values of th
coupling intensity,e&0.004 no clusters are detected. The
we find a zone where the number of clusters vary irregula
with two peaks ate'0.005 and 0.02. Arounde50.03 there
is an interval where, typically, only two to three clusters a
found. For slightly larger couplings,e'0.04, the number of
clusters reaches its maximal values and shows very la
dispersions. Then, frome'0.05 on, the system is found in
regime where clustering and full synchronization, rep
sented by a single cluster, coexist as possible attractors
nally, for e.0.054 only one cluster is observed at lon
times.

The same scenario can be alternatively described

FIG. 1. Histograms of the normalized distribution of pair di
tancesd between elements in a population ofN51000 Rössler
oscillators at timet55000, for various values of the coupling in
tensitye.
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studying the order parametersr and s defined above as a
function of the coupling intensity. Their average values o
20 realizations with different initial conditions for each valu
of e are shown in Fig. 3. For small values ofe, both r ands
are less than unity, indicating that not all of the oscillato
are entrained in clusters. In the interval 0.016&e&0.032,
however,s51 and r ,1, so that the population has full
split into clusters and no nonentrained elements are fou
This situation is reverted for larger coupling intensitie
arounde50.045. Herer ,s,1, and thus a fraction of the
population consists again of independent, nonentrained o
lators. For 0.05,e,0.055 the order parameters gro
steadily, revealing a rapid formation and coalescence of c
ters. By e'0.058 both order parameters have definitive
reached their maximum valuesr 5s51, and full synchroni-
zation has been achieved.

FIG. 2. Number of clusters counted att55000 for single real-
izations at many values of the coupling intensitye ~dots!. The line
stands for the average number of clusters over 20 independen
alizations as a function ofe.

FIG. 3. Order parametersr ands as a function of the coupling
intensity e, averaged over 20 independent realizations. Error b
indicate the mean square deviation at selected points.
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So far, our numerical results correspond to the case
weak noise, where the cluster partition does not undergo
nificant changes with time after transients have elapsed.
situation is, however, considerably different as the intens
of noise is increased. Under the action of stronger nois
phase-space trajectories successively explore the neigh
hood of the many attractors of the noiseless system@14#.
Correspondingly, single elements can migrate between c
ters, they can become temporarily nonentrained, and e
full clusters can successively coalesce and split down as
elapses. To illustrate these effects, we have performed a
ries a numerical simulations ate50.04 for several values o
the noise strength, and using in all the realizations an ini
condition that, for very weak noises, leads to an asympt
state with two clusters. Results are particularly interesting
an intermediate interval of noise strengths, 231026&S&2
31024, where the population switches intermittently b
tween a single-cluster and a two-cluster state. Figure 4 sh
histograms over pair distances for a single realization w
S5531026, at different times. Two-cluster states a
clearly defined att5860 and 2750, whereas a single bro
cluster is observed fort51610 and 2000. Att51790 we find
a transient state with several fuzzy clusters.

The intermediate noise interval of intermittent change
tween one and two clusters is preceded by a regime wh
the two-cluster partition expected for very weak noises
preserved along the whole evolution. On the other hand,
high noises beyond the intermittency region the populatio
always found to form a single large cluster. The three
gimes are shown in Fig. 5, where we have plotted the ti
evolution of histograms over pair distances as density pl
with darker tones for higher columns. For convenience in
graphical representation, pair distances are normalizedat
each time with respect to their maximal valuedmax(t)
5maxi,j$dij(t)%. The plots cover a time interval of 3000 tim
units, for three noise strengths. For weak noise@Fig. 5~a!#,
two sharp horizontal lines represent a persistent, well-defi
two-cluster partition. For large noise@Fig. 5~c!#, a wide his-
togram with its maximum neard50 reveals a single, broad
cloud. For intermediate noise strengths@Fig. 5~b!#, instead,

re-

rs

FIG. 4. Histograms over pair distances fore50.04 andS55
31026, at different times.
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the alternation of states with one and two clouds is clea
seen.

Mutual synchronization and dynamical clustering f
Rössler oscillators were previously analyzed by us only
the absence of noise and for a special nonlinear form
coupling between the elements@6#. In the present study, we
have used instead the standard linear form of coupling
tween elements@1# ~also called ‘‘vector’’ coupling @2#!.
Moreover, different values of the parameters of an individ
chaotic oscillator have now been chosen. Despite these
ferences, the observed clustering and synchronization be

FIG. 5. Density plots of histograms over normalized pair d
tances as a function of time (2000,t,5000) fore50.04 and three
values of the noise strength:~a! S5531027, ~b! S5531025, and
~c! S5531024.
y
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ior is similar for the both studied systems. The introducti
of weak noises does not significantly change the collec
dynamics of the oscillator population, though it eliminat
possible numerical artifacts caused by the computer rou
off. Strong noises destroy clusters. At intermediate noise
tensities, intermittent regimes have been found.

In comparing our data with the results of the experimen
investigation of dynamical clustering in a population of gl
bally coupled electrochemical oscillators@12#, significant
similarities can be noticed. Clustering is observed in an
terval of coupling intensities preceding the transition to f
chaotic synchronization. Both stable and intermittent clus
ing regimes are possible. When clusters are stable, the
cluster partition is strongly dependent on initial conditio
and various cluster partitions can be observed at the s
parameter values. Finally, the experimental dependenc
the order parameterr ~Fig. 11 in Ref.@12#! is similar to the
respective dependence for the Ro¨ssler oscillators~Fig. 3!.
These similarities are remarkable, especially if we take i
account that the dynamics of individual chaotic oscillato
and coupling between them were different for the experim
tal system and the studied mathematical model. They sug
that dynamical clustering is a robust universal phenome
which can be expected in various large dynamical syste
formed by globally interacting elements with chaotic ind
vidual dynamics.

This work has been partially carried out at the Abd
Salam International Centre for Theoretical Physics~Trieste,
Italy!. D.H.Z. thanks the Centre for hospitality.
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